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Abstract

Chaos control and synchronization in the unified chaotic systems is discussed in this paper. Based on the stability theory

of a cascade-connected system, control laws are presented to achieve chaos control and synchronization, respectively. The

advantage of the proposed controllers is that they are linear and have lower dimensions than that of the states. Simulation

results for Lorenz, Lü and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos, as a very interesting nonlinear phenomenon, has been intensively investigated in many fields
of science and technology over the last four decades [1–4]. Recently, chaos synchronization has attracted
increasing attention from various communities due to its powerfully potential applications in laser physics,
chemical reactor, secure communication, biomedical and so on [2–4]. Many methods have been proposed to
achieve chaos control and synchronization, such as the passive control method [5], backstepping design
method [6], impulsive control method [7], adaptive control method [8], sliding mode control [9,10], control
Lyapunov function (CLF) method [11] and nonlinear feedback method [12], etc. The controllers derived from
the above methods are nonlinear. In a real industry process, because the linear feedback controllers are
economic and easy to implement, they possess a high value in applications. Chaos synchronization via a linear
controller was investigated in Refs. [13–15]. Jiang and Zheng [13] treated the problem of chaos
synchronization as a special case of observer design. The controller design contains the Lipschitz constants.
However, even if the Lipschitz constants are known, the large Lipschitz constants always result in a high gain
controller that is not easy to realize in practice. Liu [14] gave a linear controller on the assumption that the
nonlinear function of the chaotic system satisfied an upper triangle form (see assumptions in Ref. [14]).
Consequently, it is valuable to present a new linear controller for chaotic systems.

To bridge the gap between the Lorenz attractor and the Chen attractor, Lü et al. presented a unified chaotic
systems [16]. It presents the Lorenz and Chen systems as two extremes, respectively, and the Lü system as a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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transition system. Since the unified model has been established, several papers have dealt with the chaos
control and synchronization of unified chaotic systems. In Ref. [17], Yan et al. applied the sliding mode
method to achieve the target. In Ref. [18], Chiang et al. proposed anti-synchronization of uncertain unified
chaotic systems with dead-zone nonlinearity. These controllers are nonlinear. In Ref. [15], Wang et al. gave a
linear feedback to realize synchronization of the unified chaotic systems. Based on the stability theory of the
cascade-connected system [20–23], we propose linear control for chaos control and synchronization for unified
chaotic systems. It seems that the controller is simple and the controller gains are less that those given in
Ref. [15]. When 0pao 1

29
, only one linear controller is required to realize chaos control and synchronization

for the unified chaotic systems. When 1
29
pao1, two simple and linear feedback controllers are designed to

achieve our target.
Throughout this paper, Rn denotes the n-dimensional Euclidean space. k � k denotes either the Euclidean

vector norm or the induced matrix spectral norm.
2. Main results

2.1. Preliminaries

The nonlinear differential equations that describe the unified chaotic systems are modeled by

_x1 ¼ ð25aþ 10Þðx2 � x1Þ;

_x2 ¼ ð28� 35aÞx1 � x1x3 þ ð29a� 1Þx2;

_x3 ¼ x1x2 � ð8þ aÞx3=3;

8><
>: (1)

where x1, x2, and x3 are state variables and a 2 ½0; 1� is the system parameter. When 0pao0:8, system (1) is
called the generalized Lorenz chaotic system. When a ¼ 0:8, system (1) is called the Lü chaotic system. When
0:8oap1, system (1) is called the generalized Chen chaotic system. The goal of this paper is to design linear
controllers for unified chaotic systems (1) to realize chaos control and synchronization, respectively.

For further discussion, two useful lemmas are presented. Lemma 2.1 can be found in Ref. [19] (Theorem 1)
or [20]. Lemma 2.2 can be seen in Ref. [21] (Theorem 4.2.10) or in Ref. [22] (Lemma 1). Consider the cascade-
connected system described by

_x ¼ f ðx; zÞ;

_z ¼ gðzÞ;

(
(2)

where x 2 Rn; z 2 Rm; f ð0; 0Þ ¼ 0 and gð0Þ ¼ 0; f ðx; zÞ and gðzÞ are both C1 vector fields.

Lemma 2.1 (Sundarapandian [19] and Feng and Zhang [20]). If the system _x ¼ f ðx; 0Þ and _z ¼ gðzÞ are

globally asymptotically stable at x ¼ 0 and z ¼ 0, respectively, and all the trajectories ðxðtÞ; zðtÞÞ of system (2) are

bounded, then system (2) is globally asymptotically stable at the equilibrium ðx; zÞ ¼ ð0; 0Þ.

Lemma 2.2 (Burton [21], Jiang et al. [23] and Mei et al. [23]). Consider the nonlinear time-varying system
_x ¼ f ðx; tÞ, where x 2 U � Rn, t 2 J � Rþ ¼ ½0;1�. If there exists a differential function V ðx; tÞ : U � J ! R

satisfying the following conditions:
(1)
 There exist a positive constant l0 and a scalar function l̄ : U ! R such that

l0kxk2pV ðx; tÞpl̄ðxÞkxk2,

8ðx; tÞ 2 U � J. (3)
(2)
 There exist some positive constants lV40 and �X0 such that

_V ðx; tÞj _x¼f ðx;tÞp� lV l̄ðxÞkxk2 þ �,

8ðx; tÞ 2 U � J, (4)
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then the solution of the system _x ¼ f ðx; tÞ is bounded by

kxðt;x0; t0Þkp
1

l0
V ðx0; t0Þe

�lV ðt�t0Þ þ
�

l0lV

ð1� e�lV ðt�t0ÞÞpM, (5)

where M ¼ ð1=l0ÞV ðx0; t0Þ þ ð�=l0lV Þ.
2.2. Chaos control

In some cases, a chaotic effect is undesirable in practice and it restricts the operating range of many
electronic and mechanical devices. Recently, chaos control has attracted a great deal of attention in the
engineering society [6,12]. Chaos control means to design a controller that is able to mitigate or eliminate the
chaos behavior of nonlinear systems that experience chaotic phenomenon. In this section, a linear controller is
presented to globally stabilize the equilibrium point E ¼ ð0; 0; 0Þ of the unified chaotic systems (1). We assume
that the controlled unified chaotic systems are given by

_x1 ¼ ð25aþ 10Þðx2 � x1Þ þ u1;

_x2 ¼ ð28� 35aÞx1 � x1x3 þ ð29a� 1Þx2 þ u2;

_x3 ¼ x1x2 � ð8þ aÞx3=3:

8><
>: (6)

The procedure of controller design consists of 2 steps.
Step 1: Let u1 ¼ �ð25aþ 10Þx2. Then the first equation of Eq. (6) becomes

_x1 ¼ �ð25aþ 10Þx1. (7)

Obviously, it is globally asymptotically stable at x1 ¼ 0.
Step 2: Consider the remaining subsystem of system (6), i.e.,

_x2 ¼ ð28� 35aÞx1 � x1x3 þ ð29a� 1Þx2 þ u2;

_x3 ¼ x1x2 � ð8þ aÞx3=3:

(
(8)

Choose u2 ¼ �Lx2 and substitute x1 ¼ 0 into subsystem (8). From the linear system theory, if L4ð29a� 1Þ
(for example, we can take L ¼ 29) system (8) with x1 ¼ 0 is globally asymptotically stable at x2 ¼ x3 ¼ 0.

We now verify that the solution of the closed system (8) is bounded with the control u2 ¼ �Lx2ðL4ð29a� 1ÞÞ:
Consider the following candidate Lyapunov function:

V ¼ 1
2
x2
2 þ

1
2
x2
3. (9)

Calculating the derivative of V along the solution of system (8), we obtain

_V ¼ x2½ð28� 35aÞx1 � x1x3 þ ð29a� 1Þx2 � Lx2� þ x3 x1x2 �
8þ a
3

x3

� �

¼ � ½L� ð29a� 1Þ�x2
2 þ ð28� 35aÞx1x2 �

8þ a
3

x2
3

p� ½L� ð29a� 1Þ�x2
2 þ g1x

2
2 þ

1

g1
ð28� 35aÞ2x2

1 �
8þ a
3

x2
3

¼ � ½L� ð29a� 1Þ � g1�x
2
2 �

8þ a
3

x2
3 þ G, (10)

where G ¼ ð1=g1Þð28� 35aÞ2x2
1 and g1 is a positive constant that can be selected arbitrarily. Notice that

jx1ðt; t0Þjojx1ð0Þj, and so G must be bounded. From Lemma 2 and inequality (10), if L4ð29a� 1Þ þ g1, then
each solution of subsystem (8) is bounded.

Then on addition with Lemma 1 the unified chaotic systems (6) are globally asymptotically stable at the
equilibrium point E ¼ ð0; 0; 0Þ.
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Remark 2.1. When 0pao 1
29
, from inequality (10), the feedback u1 ¼ �ð25aþ 10Þ x2; u2 ¼ 0 is sufficient to

globally asymptotically stabilize the system to the origin E ¼ ð0; 0; 0Þ.

Remark 2.2. From the above proof we have seen that only one state x2 is adopted for the feedback.

Remark 2.3. When a ¼ 0, the unified chaotic systems become the Lorenz chaotic system. From Remark 2.1,
only one linear controller u1 can globally stabilize the Lorenz chaotic system. This is simpler than M.T.
Yassen’s nonlinear controller u ¼ x1ðx3 � ðaþ cÞÞ [6].
2.3. Synchronization of the unified chaotic systems

In general, the two dynamic systems in synchronization are called the master system and the slave system,
respectively. This subsection will design a controller to make the trajectories of the slave system asymptotically
track the trajectories of the master system (1) , i.e., synchronous. In the following, the master chaotic system is
given by Eq. (1) and its slave system is given by

_y1 ¼ ð25aþ 10Þðy2 � y1Þ þ u1;

_y2 ¼ ð28� 35aÞy1 � y1y3 þ ð29a� 1Þy2 þ u2;

_y3 ¼ y1y2 � ð8þ aÞy3=3:

8><
>: (11)

Denote by the synchronization error e ¼ y� x. Our aim is to design a controller uðtÞ ¼ ðu1; u2Þ
T such that the

controlled system (11) asymptotically synchronizes the master system (1) in the sense that

lim
t!1
kek ¼ lim

t!1
kyðt; y0Þ � xðt;x0Þk ¼ 0.

Subtracting Eq. (1) from Eq. (11) gives the following error system:

_e1 ¼ ð25aþ 10Þðe2 � e1Þ þ u1;

_e2 ¼ ð28� 35aÞe1 � y1y3 þ x1x3 þ ð29a� 1Þe2 þ u2;

_e3 ¼ y1y2 � x1x2 � ð8þ aÞe3=3:

8><
>: (12)

From the fact that

x1x3 � y1y3 ¼ �e1e3 � e1x3 � e3x1;

y1y2 � x1x2 ¼ e1e2 þ e1x2 þ e2x1;

(
(13)

system (12) can be rewritten in the following form:

_e1 ¼ ð25aþ 10Þðe2 � e1Þ þ u1;

_e2 ¼ ð28� 35aÞe1 � e1e3 � e1x3 � e3x1 þ ð29a� 1Þe2 þ u2;

_e3 ¼ e1e2 þ e1x2 þ e2x1 � ð8þ aÞe3=3:

8><
>: (14)

Here, we still take two steps to design a linear controller to globally asymptotically stabilize the error
system (14).

Step 1: Let u1 ¼ �ð25aþ 10Þe2 and the first subsystem of (14) becomes

_e1 ¼ �ð25aþ 10Þe1. (15)

Obviously, for each a 2 ½0; 1� it is globally asymptotically stable at e1 ¼ 0.
Step 2: Consider the remaining subsystem of the error system (14)

_e2 ¼ ð28� 35aÞe1 � e1e3 � e1x3 � e3x1 þ ð29a� 1Þe2 þ u2;

_e3 ¼ e1e2 þ e1x2 þ e2x1 � ð8þ aÞe3=3:

(
(16)
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Substitute e1 ¼ 0, u2 ¼ �ke2ðk429a� 1Þ into the above system; then, we can have

_e2 ¼ �e3x1 þ ð29a� 1Þe2 � ke2;

_e3 ¼ e2x1 � ð8þ aÞe3=3:

(
(17)

For system (17) consider the following candidate Lyapunov function:

V ¼ 1
2
e22 þ

1
2
e23. (18)

The derivative along the solution of system (17) is

_V ¼ � e2½k � ð29a� 1Þ þ x1e3� þ e3ðe2x1 � ð8þ aÞe3=3Þ

¼ � ½k � ð29a� 1Þ�e22 �
8þ a
3

e23. (19)

From the Lyapunov stability theory we can conclude that subsystem (17) is asymptotically stable at the origin
e2 ¼ 0; e3 ¼ 0.

Now consider the Lyapunov function V ¼ 1
2

e22 þ
1
2

e23. Its derivative along subsystem (16) is

_V ¼ e2½ð28� 35aÞe1 � e1e3 � e1x3 � e3x1 þ ð29a� 1Þe2 � ke2�

þ e3 e1e2 þ e1x2 þ e2x1 �
8þ a
3

e3

� �

¼ � ½k � ð29a� 1Þ�e22 þ ð28� 35aÞe1e2 � e1e2x3 þ e3e1x2 �
8þ a
3

e23

p� ½k � ð29a� 1Þ � d1 � d2�e22 �
8þ a
3
� d3

� �
e23 þP (20)

where

P ¼
1

d1
ð28� 35aÞ2e21 þ

1

d2
e21x

2
3 þ

1

d3
e21x

2
2.

Because the master system (1) is chaotic we know that its states x1, x2, and x3 are bounded. Moreover, from
system (15) we can obtain je1ðt; t0Þjoje1ð0Þj, and so P is bounded. Because d1, d2 and d3 can be arbitrarily
selected we can chose them as small as possible such that k4ð29a� 1Þ þ d1 þ d2. Hence, the solution of system
(16) is bounded from Lemma 2. Thus, together with Lemma 1 the error system (14) is globally asymptotically
stable at Eð0; 0; 0Þ. This means the slave system (11) can asymptotically synchronize the master system (1) with
a simple linear feedback controller.

Corollary 2.1. When 0pao 1
29

from the proof process we know that there is only one simple controller

u1 ¼ �ð25aþ 10Þe2 ¼ �ð25aþ 10Þðy2 � x2Þ; u2 ¼ 0, which can realize the synchronization of two identical

unified chaotic systems.

Remark 2.4. Compared with the nonlinear controller derived from the passive controller [5], the controller
designed in this paper is simpler and free from the finding of the bounds of the states of the chaotic system (1).
In Ref. [15], the authors proposed three controllers u1 ¼ �k1e1ðk14� 25a� 8Þ, u2 ¼ �k2e2ðk2429a� 1þ
ð19� 5a� 0:5x3Þ

2 and u3 ¼ �k3e3ðk340:25y2
1 � ð8þ aÞ=3Þ to realize synchronization of the unified chaotic

systems. The controller gain is larger and they should also determine the bounds of chaotic states x3 and y1.

3. Simulation results

In this section, the fourth-order Runge–Kutta integration method is used to obtain the solutions of
differential equations with step size 0.001. The initial states of the controlled Lorenz and Chen systems are
xð0Þ ¼ 10, yð0Þ ¼ �10, zð0Þ ¼ 10. Figs. 1 and 2 show that the Lorenz and Chen system can be stabilized to the
origin ð0; 0; 0Þ with the linear control law designed in Section 2.2.

Choose the initial conditions of the master system (1): x1ð0Þ ¼ �1;x2ð0Þ ¼ �1;x3ð0Þ ¼ 1, and of the slave
system (11): y1ð0Þ ¼ 4; y2ð0Þ ¼ �4; y3ð0Þ ¼ 4. When a ¼ 0 system (1) is the Lorenz chaotic system. When
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Fig. 1. The time response of the states for the controlled Lorenz system ða ¼ 0Þ.
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Fig. 2. The time response of the states for the controlled Chen system ða ¼ 1Þ.
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Fig. 3. Synchronization of two identical Lorenz systems x1 and y1 ða ¼ 0Þ.
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a ¼ 0:8 the system is a Lü chaotic system. The simulation results for synchronization of the Lorenz and Lü
chaotic systems are shown in Figs. 3–6, respectively. Figs. 3–5 show the synchronization of the Lorenz chaotic
system. Fig. 6 shows the time response of the error system for the synchronization of the Lü chaotic system. As
expected, one can observe that the trajectories of the slave system asymptotically approach those of the master
system as illustrated in Figs. 3–6.

4. Conclusion

Based on the stability theory of the cascade-connected systems, a novel method is developed to realize chaos
control and synchronize the unified chaotic systems. It is obvious that the feedback given in this paper is very
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Fig. 6. Synchronization errors between master and slave Lü chaotic systems (a ¼ 0:8).
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simple. Moreover, when 0pao 1
29

only one linear controller is required to realize the chaotic control and
synchronization for the unified chaotic systems. The effectiveness of this proposed synchronization method
has been validated by numerical simulation results for Lorenz, Lü and Chen chaotic systems, respectively.
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